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Chemical kinetic equations are easily cast in a Hamiltonian form, making them amenable to a wealth of
established techniques. The formalism allows for canonical transformations to simplify the rate equations,
enables application of standard perturbation methods, and provides an approach for finding system invariants.
Each of these features is illustrated for nontrivial systems.

Introduction

Hamiltonian theory is a beautiful and powerful tool in
classical and quantum dynamics. Symmetry analyses, conserva-
tion laws, applications of statistical mechanics, and approxima-
tion methods are most readily treated with Hamiltonian formu-
lations. Here we are interested in developing chemical kinetic
equations in a Hamiltonian form so various established tech-
niques become available for solutions or analyses.

The basic idea is to construct a Hamiltonian using chemical
concentrations as generalized coordinates with the reaction rates
expressed by Hamilton’s equations. A quantum mechanical
version of this formulation was developed to examine energy
relations for a set of interaction chemicals.1 This note develops
a classical counterpart and explores its use in analyzing rate
equations.

E. H. Kerner introduced Hamiltonian analyses for Lotka-
Volterra rate equations.2-4 He applied the formalism to a
statistical-mechanical analysis of interacting biological species
and arrived at an analogue of temperature for biosystems.5 B.
Goodwin followed a similar tack to model ensembles of genetic
control mechanisms based on a Hamiltonian for a set of rate
equations modeling end product repression.6,7 These pioneering
treatments illustrate some of the interesting and clever applica-
tions made possible with a Hamiltonian formulation. The Kerner
and Goodwin Hamiltonians have specialized forms, whereas the
formalism described here applies to general reactions. The cost
of this generality is a doubling of independent variables to
include conjugate “momenta” for the coordinates. Fortunately,
the result is an extremely simple degenerate form that is shown
here to have significant utility.

Three features of the Hamiltonian treatment seem especially
useful. In particular, canonical transformations are introduced
to simplify the kinetic equations, perturbation theory is applied
for approximate solutions, and invariants are shown to extract
information without requiring a full solution.

The Hamiltonian

Let qj represent the concentration of thejth chemical species.
The time development of these concentrations is governed by
a set ofm rate equations,

where the time derivative is denoted by a dot andj runs from
1 to m. We now construct a HamiltonianH from which eq 1 is
recovered using theq’s as generalized coordinates. This requires
that we introduce a conjugate variablepj for eachqj. Doubling
the number of state variables may seem an excessive complica-
tion, but the higher dimensionality is compensated largely by
greater flexibility in transformations and methodology.

We begin the construction with Hamilton’s equations

and

Substitutefj from eq 1 in the left-hand side of eq 2 and impose
the property of exact differentials,∂2H/∂pj∂qi ) ∂2H/∂qi∂pj, so
that eqs 2 and 3 give

The general solution for the latter expression is

whereεi is a constant of integration and the sum is over allj.
Substituting for the left-hand side from eq 3 and integrating
with respect toqi gives the Hamiltonian up to an arbitrary
additive constant,

We can chooseεj ) 0 as these are arbitrary and cannot affect
the rate relations. The resulting form used here is8

H is a degenerate Hamiltonian that cannot be converted to a
Lagrangian by a Legendre transform. Despite its simplistic form,
eq 5 will be shown to have robust applicability.† E-mail: finkelr@stjohns.edu. Fax: 631-462-5547
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There is no particular need to ascribe a physical interpretation
to the conjugate momenta for our present purposes since we
are ultimately concerned only with relations for the concentration
coordinatesq. We treatp’s as formal entities and leave any
interpretation in abeyance, as they do not impact our narrow
focus on rate equations.

Canonical Transformations

The Hamiltonian formalism is nicely illustrated with the
Lotka-Volterra equations,

This system is well studied and has interesting properties. In
particular, it has oscillatory solutions in neighborhoods around
the steady state. It was introduced9 in 1920, and only recently
have analytic solutions been developed.10,11Nothing fundamen-
tal can be learned by analyzing this fully solved system. It does,
however, provide a good test case and our treatment highlights
the relative contributions of amplitude and phase in perturbations
near the steady state.

The Hamiltonian is simply

This can be changed to a more tractable form by transforming
to a coordinate system appropriate to small oscillations around
the steady-state values of theq’s. A necessary and sufficient
condition for the transformation to new coordinates (r,θ) and
conjugate momenta (pr,pθ) to be canonical is that the Poisson
brackets with respect to the new variables satisfy12

The chosen transformation is

The new Hamiltonian becomes

whereω ) (k1k2)1/2 andh1 andh2 are given by

The canonical transformation produces a particularly revealing
Hamiltonian in eq 10. Coordinater is essentially the amplitude
of displacement from the steady state, so a gross approximation
for small displacements can neglect the last two terms and
Hamilton’s equations immediately determine

whereθ0, L, R, andPR are constants. Substituting intoq1 and
q2 of eq 9 gives the system’s oscillatory behavior in this
approximation. Higher order approximations can be achieved
with perturbation theory, the topic of the next section.

Perturbation Theory

A Hamiltonian formulation is the basis for time-dependent
perturbation theory in classical dynamics.13 The Hamiltonian
H for the full problem is separated into a solvable unperturbed
portion H0, and a small perturbationH1,

A transformation to new conjugate variablesQ andP is then
sought so that the unperturbed Hamiltonian vanishes and the
transformed Hamiltonian equals only the perturbationH1.
Hamilton’s equations for the new variables are then

It follows from H0 ) 0 that the new variables are constants for
the unperturbed case. These are substituted in the right-hand
sides of eqs 14, which can be integrated in successive ap-
proximations.

The transformation toQ andP is found by first solving the
unperturbed Hamilton-Jacobi equation for the principal function
S(q,P,t),

The P's are integration constants (or equivalently, separation
constants) of the partial differential equation. The transformation
equations linking the new coordinates to the originals are then
obtained from the relations

Clearly, the entire procedure can be adopted without alteration
to the chemical case.

Applying eq 15 to the Lotka-Volterra system returns the
results of eq 12, where theQ set is{θ0,R} with the correspond-
ing conjugateP set{L,PR}. These new variables are substituted
for the originals into the Hamiltonian, which reduces to

with the h coefficients now expressed in the new coordinates.
First-order corrections for our model case were easily found

by integrating eqs 14. The results are in excellent agreement
with numerical solutions in the regionR , ω/k. Detailed
outcomes are of little concern here, but we note that the phase
is more sensitive than the amplitude to small perturbations
because the first-order corrections are proportional toRandR2,
respectively.

The value of the method is not limited to perturbations around
a steady state. We considered the reactions

No general solution to the corresponding rate equations is
known, but Hagemann and Schwarz14 proposed special restric-
tions on the rate constants for which the system can be solved

dq1/dt ) k1q1 - kq1q2

dq2/dt ) kq1q2 - k2q2 (6)

H ) (k1q1 - kq1q2)p1 + (kq1q2 - k2q2)p2 (7)

[qi, pj] ) δij (8)

q1 ) xk2r cosθ + k2/k

q2 ) xk1r sin θ ) k1/k

p1 ) (pr cosθ - pθ sin θ/r)k2
-1/2

p2 ) (pr sin θ - pθ cosθ/r)k1
-1/2 (9)

H ) ωpθ + h1r + h2r
2 (10)

h1 ) kpθ sin θ cosθ(xk1 sin θ + xk2 cosθ)

h2 ) kpr sin θ cosθ(xk2 sin θ - xk1 cosθ) (11)

θ ) ωt + θ0

pθ ) L

r ) R

pr ) PR (12)

H ) H0 + H1 (13)

dQ/dt ) ∂H1/∂P dP/dt ) -∂H1/∂P (14)

H0(q,∂S/∂q) + ∂S/∂t ) 0 (15)

Q ) ∂S/∂P p ) ∂S/∂q (16)

H1 ) h1R + h2R
2

A + A 98
k1

products

A + B 98
k2

products

B + B 98
k3

products (17)
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and which gave a satisfactory description of their experimental
results,

We relaxed these restrictions by adding arbitrary increments to
k1 andk3 and treating the alteration as a perturbation.

Denoting the concentrations in an obvious notation, the first-
order perturbation produces a result

where A0 and B0 are the initial concentrations andR is the
correction due to the perturbation,

Hagemann and Schwarz found that their data for (A + B)-1

was well described as a linear function of time. Here we see
that their finding is validated for a wide domain of rate
coefficients including the special caseR ) 0 they solved exactly.

Invariant Quantities

The rate of change of any function of generalized coordinates,
G, is given by the Poisson bracket relation,

G is an invariant when the bracket vanishes,

and thereby provides information about the system without
requiring a full solution. Moreover, such invariants can be used
to simplify the original rate equations. As in classical dynamics,
the time-independent Hamiltonian is constant. Another useful,
though less ubiquitous, application occurs whenG is found to
generate a constantR,

It follows that time dependence is introduced fromG ) Rt +
φ, whereφ is a constant of integration.

Consider, for example, a second-order reaction A+ B f C.
Equation 21 is satisfied byG’s that are arbitrary functions ofA
+ C or A - B, the expected invariant quantities. It is amusing
to solve the rate equations algebraically by choosingG )
ln[B2(pC - pA - pB)] giving

so thatG ) k(A0 - B0)t + φ. The full solution then follows by
substitutingG into H ) constant.

RestrictingG in eq 21 to be solely a function of coordinates
q gives a time-independent partial differential equation,

Solutions to this expression are “constants of the motion” that
provide information about the system without benefit of a full
solution. Moreover, such invariants can be used to simplify the
original rate equations. Applying eq 23 to the Lotka-Volterra
equations reveals a known invariant quantity,

This is an exact result that gives the system trajectories for an
arbitrary initial condition even without knowing time-dependent
solutions.

Equation 23 merely expresses that the functionG has a
vanishing time derivative. Nevertheless, it is particularly useful
in Hamiltonian treatments because of the flexibility afforded
by canonical transformations. The following case illustrates this
point and produces a heretofore unknown invariant for the
Hagemann-Schwarz system.

We were unable to solve eq 23 directly for the full system
(17) when it was expressed in the original concentrationsA and
B. It became tractable with standard methods, however, after
performing a canonical transformation,

Transforming the solutionG(q1,q2) back to the original variables
produces the invariant,

where

This expression determines the system trajectories although the
full time-dependent solutions are unknown.

Concluding Remarks

Our Hamiltonian has a completely transparent form that likely
was obvious to investigators previously. The primary contribu-
tion of this note was to demonstrate that the formalism is
effective despite a doubling of state variables and a degenerate
form for H. Indeed, highly nontrivial systems were effectively
treated with canonical transformations, perturbation theory, and
analyses of invariants, and some new results were generated in
the process.
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k2 ) 2k1 ) 2k3 (18)

(A + B)-1 ) (A0 + B0)
-1 + k2(1 - R)t (19)

R )
k1 + k3 - k2

2k2
(1 +

A0 - B0

A0 + B0
)2

[G, H] ) dG/dt (20)

[G, H] ) 0 (21)

[G, H] ) R (22)

[G, H] ) k(A - B) ) k(A0 - B0)

∑
j

fi∂G/∂qj ) 0 (23)

G ) k2 ln(A) + k1 ln(B) - k (A + B)

A ) (q1 + q2)/2 pA ) p1 + p2

B ) (q1 - q2)/2 pB ) p1 - p2

G )
2k2k3 ln A + 2k1k2 ln B - k2

2 ln u - 4k1k3(ln AB - ln u)

u ) (2k1 - k2)A + (k2 - 2k3)B
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